PS (FLAT SHEET) PILING

PS (FLAT SHEET) PILING PROPERTIES

Minimum Grade 60 Standard					Per Single Section						Per Unit of Wall			
	Nominal Width	Depth (Height)	Wall Depth (Height)	Web Thickness	Area	Weight	Moment of Inertia	Section Modulus	Total Surface Area	Nominal Coating Area*	Area	Weight	Moment of Inertia	Section Modulus
Section	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	in. (mm)	in. (mm)	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \hline \text { in. } 2 \\ \text { (cm2) } \end{gathered}$	$\begin{gathered} \hline \mathrm{lbs} / \mathrm{tt} \\ (\mathrm{~kg} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \hline \text { in. } 4 \\ (\mathrm{~cm} 4) \end{gathered}$	$\begin{gathered} \hline \text { in. } 3 \\ (\mathrm{~cm} 3) \end{gathered}$	$\begin{gathered} \mathrm{ft2} / \mathrm{ft} \\ (\mathrm{~m} 2 / \mathrm{m}) \end{gathered}$	$\begin{gathered} \mathrm{ft2} / \mathrm{ft} \\ (\mathrm{~m} 2 / \mathrm{m}) \end{gathered}$	$\begin{gathered} \hline \text { in.2/ft } \\ (\mathrm{cm} 2 / \mathrm{m}) \end{gathered}$	$\begin{gathered} \hline \mathrm{lbs} / \mathrm{ti} 2 \\ (\mathrm{~kg} / \mathrm{m} 2) \end{gathered}$	$\begin{gathered} \text { in.4/ft } \\ (\mathrm{cm} 4 / \mathrm{m}) \end{gathered}$	$\begin{gathered} \hline \mathrm{in} 3 / \mathrm{ft} \\ (\mathrm{~cm} 3 / \mathrm{m}) \end{gathered}$
PS 27.5	$\begin{gathered} 19.69 \\ 500 \end{gathered}$	$\begin{gathered} 2.83 \\ 72 \end{gathered}$	$\begin{gathered} 3.55 \\ 90 \end{gathered}$	$\begin{aligned} & 0.40 \\ & 10.2 \end{aligned}$	$\begin{aligned} & 13.26 \\ & 85.5 \end{aligned}$	$\begin{aligned} & 45.1 \\ & 67.1 \end{aligned}$	$\begin{gathered} 5.0 \\ 207 \end{gathered}$	$\begin{aligned} & 3.2 \\ & 52 \end{aligned}$	$\begin{aligned} & 4.50 \\ & 1.37 \end{aligned}$	$\begin{aligned} & 3.64 \\ & 1.11 \end{aligned}$	$\begin{gathered} 8.08 \\ 171.0 \end{gathered}$	$\begin{gathered} 27.5 \\ 134.2 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 414 \end{aligned}$	$\begin{gathered} 1.9 \\ 103 \end{gathered}$
PS 31	$\begin{gathered} 19.69 \\ 500 \end{gathered}$	$\begin{gathered} 2.83 \\ 72 \end{gathered}$	$\begin{gathered} 3.55 \\ 90 \end{gathered}$	$\begin{aligned} & 0.50 \\ & 12.7 \end{aligned}$	$\begin{aligned} & \hline 14.96 \\ & 96.5 \end{aligned}$	$\begin{aligned} & 50.9 \\ & 75.7 \end{aligned}$	$\begin{gathered} \hline 5.0 \\ 207 \\ \hline \end{gathered}$	$\begin{aligned} & 3.2 \\ & 52 \end{aligned}$	$\begin{aligned} & 4.50 \\ & 1.37 \end{aligned}$	$\begin{aligned} & \hline 3.64 \\ & 1.11 \end{aligned}$	$\begin{gathered} \hline 9.11 \\ 192.9 \end{gathered}$	$\begin{gathered} \hline 31.0 \\ 151.4 \end{gathered}$	$\begin{aligned} & \hline 3.0 \\ & 414 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 103 \end{aligned}$

*Both sides of sheet; excludes interior of interlock.
All listed dimensions are nominal. Due to rolling practices, variations in web thickness is common. Permitted variations for such dimensions are not addressed.

Improper Interlock

Grade	Minimum Interlock Strength ${ }^{(1)}$	Minimum Swing ${ }^{(2)}$
A328	$16 \mathrm{kips} / \mathrm{in} .(2,800 \mathrm{kN} / \mathrm{m})$	10 degrees
A572-50	$20 \mathrm{kips} / \mathrm{in} .(3,500 \mathrm{kN} / \mathrm{m})$	10 degrees
A572-60	$24 \mathrm{kips} / \mathrm{in} .(4,200 \mathrm{kN} / \mathrm{m})$	10 degrees

Higher interlock strengths are available; obtainable swing may be reduced in interlock strengths above 24 kips/in (4,200 kN/m).
(1) These minimum ultimate interlock strengths assume proper interlocking of sheets. To verify the strength of PS Sheet Piling, consider both yielding of the web and failure of the interlock.
(2) Swing reduces 1.5 degrees for each 10 feet (3 meters) in length over 70 feet (21 meters).

As a general rule, Gerdau advises against interlocking PS sections with other producers' section(s).
Gerdau PS 27.5 and PS 31 can be interlocked together. PS and Z-Piling sections should not be interlocked together.

PS (FLAT SHEET) PILING

PS FLAT SHEET PILING 30º EXTRUDED WYE LAYOUT

Θ is measured to the center of the 30° connection

							Number of Piles			Area			
Number of Piles in Cell \dagger	$\begin{gathered} \mathrm{D} \\ \mathrm{ft} \\ \text { (m) } \end{gathered}$	$\begin{gathered} \mathbf{z} \\ \mathrm{ft} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{y} \\ \mathrm{ft} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{r} \\ \mathrm{ft} \\ \mathrm{f} \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \mathrm{ft} \\ (\mathrm{~m}) \end{gathered}$	$\underset{\mathrm{deg}}{\Theta}$	m	n	p	Within Circle sg ft (sw m)	Between Circles sg ft (sg m)	Average Width ft (m)	Layout Number (see Website)
78	$\begin{aligned} & 39.07 \\ & 11.91 \end{aligned}$	$\begin{gathered} 12.88 \\ 3.93 \end{gathered}$	$\begin{aligned} & 51.96 \\ & 15.84 \end{aligned}$	$\begin{gathered} 9.1 \\ 2.77 \end{gathered}$	$\begin{aligned} & 9.88 \\ & 3.01 \end{aligned}$	31.8	13	17	24	$\begin{gathered} 1199 \\ 111.4 \end{gathered}$	$\begin{gathered} 549 \\ 51.0 \end{gathered}$	$\begin{aligned} & 33.6 \\ & 10.2 \end{aligned}$	2
84	$\begin{aligned} & 42.21 \\ & 12.87 \end{aligned}$	$\begin{aligned} & 12.47 \\ & 3.80 \end{aligned}$	$\begin{aligned} & 54.61 \\ & 16.65 \end{aligned}$	$\begin{gathered} \hline 9.1 \\ 2.77 \end{gathered}$	$\begin{aligned} & 10.66 \\ & 3.25 \end{aligned}$	31.6	14	17	26	$\begin{gathered} 1399 \\ 130.0 \end{gathered}$	$\begin{gathered} \hline 566 \\ 52.6 \end{gathered}$	$\begin{aligned} & 35.9 \\ & 10.9 \end{aligned}$	1
90	$\begin{aligned} & 45.34 \\ & 13.82 \end{aligned}$	$\begin{gathered} \hline 14.14 \\ 4.31 \end{gathered}$	$\begin{aligned} & 59.48 \\ & 18.13 \end{aligned}$	$\begin{gathered} 10.15 \\ 3.09 \end{gathered}$	$\begin{aligned} & 11.45 \\ & 3.49 \end{aligned}$	31.5	15	19	30	$\begin{gathered} 1615 \\ 150.0 \end{gathered}$	$\begin{gathered} \hline 692 \\ 64.3 \end{gathered}$	$\begin{aligned} & 38.8 \\ & 11.8 \end{aligned}$	2
96	$\begin{aligned} & 48.48 \\ & 14.78 \end{aligned}$	$\begin{gathered} 13.72 \\ 4.18 \end{gathered}$	$\begin{aligned} & 62.19 \\ & 18.96 \end{aligned}$	$\begin{gathered} 10.15 \\ 3.09 \end{gathered}$	$\begin{gathered} 12.23 \\ 3.73 \end{gathered}$	31.4	16	19	30	$\begin{gathered} 1846 \\ 171.5 \end{gathered}$	$\begin{gathered} 711 \\ 66.1 \end{gathered}$	$\begin{aligned} & \hline 41.1 \\ & 12.5 \end{aligned}$	1
102	$\begin{aligned} & 51.61 \\ & 15.73 \end{aligned}$	$\begin{aligned} & 15.39 \\ & 4.69 \end{aligned}$	$\begin{gathered} 67 \\ 20.42 \end{gathered}$	$\begin{gathered} 3.41 \\ 0 \end{gathered}$	$\begin{aligned} & 13.01 \\ & 3.97 \end{aligned}$	30.2	17	21	32	$\begin{gathered} 2092 \\ 194.4 \end{gathered}$	$\begin{gathered} 853 \\ 79.2 \end{gathered}$	$\begin{gathered} \hline 44 \\ 13.4 \end{gathered}$	2
108	$\begin{aligned} & 54.74 \\ & 16.68 \end{aligned}$	$\begin{aligned} & 14.97 \\ & 4.56 \end{aligned}$	$\begin{aligned} & 69.71 \\ & 21.25 \end{aligned}$	$\begin{aligned} & 11.2 \\ & 3.41 \end{aligned}$	$\begin{aligned} & 13.8 \\ & 4.21 \end{aligned}$	31.3	18	21	34	$\begin{gathered} 2354 \\ 218.7 \end{gathered}$	$\begin{gathered} \hline 873 \\ 81.1 \end{gathered}$	$\begin{aligned} & 46.3 \\ & 14.1 \end{aligned}$	1
114	$\begin{aligned} & 57.88 \\ & 17.64 \end{aligned}$	$\begin{gathered} 16.64 \\ 5.07 \end{gathered}$	$\begin{gathered} 74.51 \\ 22.71 \end{gathered}$	$\begin{aligned} & \hline 12.24 \\ & 3.73 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.58 \\ & 4.44 \end{aligned}$	31.2	19	23	36	$\begin{array}{r} \hline 2631 \\ 244.4 \\ \hline \end{array}$	$\begin{aligned} & \hline 1029 \\ & 95.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 49.1 \\ & 15.0 \\ & \hline \end{aligned}$	2
120	$\begin{aligned} & \hline 61.01 \\ & 18.60 \end{aligned}$	$\begin{aligned} & 16.22 \\ & 4.94 \end{aligned}$	$\begin{aligned} & \hline 77.23 \\ & 23.54 \end{aligned}$	$\begin{aligned} & \hline 12.24 \\ & 3.73 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.36 \\ & 4.68 \end{aligned}$	31.1	20	23	38	$\begin{gathered} \hline 2923 \\ 271.6 \end{gathered}$	$\begin{aligned} & 1051 \\ & 97.6 \end{aligned}$	$\begin{aligned} & 51.5 \\ & 15.7 \end{aligned}$	1
126	$\begin{aligned} & 64.14 \\ & 19.55 \end{aligned}$	$\begin{gathered} 17.89 \\ 5.45 \end{gathered}$	$\begin{aligned} & \hline 82.03 \\ & 25.00 \end{aligned}$	$\begin{gathered} 13.28 \\ 4.05 \end{gathered}$	$\begin{aligned} & 16.15 \\ & 4.92 \end{aligned}$	31.1	21	25	40	$\begin{gathered} 3232 \\ 300.3 \end{gathered}$	$\begin{gathered} 1222 \\ 113.5 \end{gathered}$	$\begin{aligned} & \hline 54.3 \\ & 16.6 \end{aligned}$	2
132	$\begin{aligned} & \hline 67.28 \\ & 20.51 \end{aligned}$	$\begin{gathered} \hline 19.56 \\ 5.96 \end{gathered}$	$\begin{aligned} & \hline 86.83 \\ & 26.47 \end{aligned}$	$\begin{gathered} 14.33 \\ 4.37 \end{gathered}$	$\begin{gathered} \hline 16.93 \\ 5.16 \end{gathered}$	31	22	27	42	$\begin{gathered} 3555 \\ 330.3 \end{gathered}$	$\begin{gathered} \hline 1406 \\ 130.6 \end{gathered}$	$\begin{aligned} & \hline 57.1 \\ & 17.4 \end{aligned}$	1
138	$\begin{aligned} & 70.41 \\ & 21.46 \end{aligned}$	$\begin{gathered} 19.14 \\ 5.83 \end{gathered}$	$\begin{aligned} & \hline 89.55 \\ & 27.29 \end{aligned}$	$\begin{gathered} 14.33 \\ 4.37 \end{gathered}$	$\begin{gathered} 17.71 \\ 5.40 \end{gathered}$	31	23	27	44	$\begin{gathered} \hline 3894 \\ 361.8 \end{gathered}$	$\begin{gathered} \hline 1432 \\ 133.0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 59.5 \\ & 18.1 \\ & \hline \end{aligned}$	2
144	$\begin{aligned} & 73.55 \\ & 22.42 \end{aligned}$	$\begin{aligned} & 20.81 \\ & 6.34 \end{aligned}$	$\begin{aligned} & 94.35 \\ & 28.76 \end{aligned}$	$\begin{aligned} & 15.37 \\ & 4.68 \end{aligned}$	$\begin{array}{r} \hline 18.5 \\ 5.64 \\ \hline \end{array}$	31	24	29	46	$\begin{array}{r} 4248 \\ 394.7 \\ \hline \end{array}$	$\begin{gathered} \hline 1631 \\ 151.5 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 62.3 \\ & 19.0 \\ & \hline \end{aligned}$	1
150	$\begin{aligned} & 76.68 \\ & 23.37 \end{aligned}$	$\begin{gathered} 20.39 \\ 6.21 \end{gathered}$	$\begin{aligned} & 97.07 \\ & 29.59 \end{aligned}$	$\begin{aligned} & 15.37 \\ & 4.68 \end{aligned}$	$\begin{gathered} 19.28 \\ 5.88 \end{gathered}$	30.9	25	29	48	$\begin{gathered} \hline 4618 \\ 429.0 \end{gathered}$	$\begin{gathered} 1657 \\ 153.9 \end{gathered}$	$\begin{aligned} & \hline 64.6 \\ & 19.7 \end{aligned}$	2
156	$\begin{aligned} & \hline 79.81 \\ & 24.33 \end{aligned}$	$\begin{gathered} \hline 22.06 \\ 6.72 \end{gathered}$	$\begin{aligned} & 101.87 \\ & 31.05 \end{aligned}$	$\begin{gathered} 16.42 \\ 5.00 \end{gathered}$	$\begin{gathered} 20.06 \\ 6.11 \\ \hline \end{gathered}$	30.9	26	31	50	$\begin{gathered} 5003 \\ 464.8 \end{gathered}$	$\begin{gathered} \hline 1871 \\ 173.8 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 67.5 \\ & 20.6 \\ & \hline \end{aligned}$	1

†Includes 4 extruded 30° Wye connectors
All dimensions given are nominal.

PS (FLAT SHEET) PILING

PS FLAT SHEET PILING 90° EXTRUDED TEE LAYOUT

\dagger Includes 4 extruded 90° Tee connectors
All dimensions given are nominal.

DIAMETERS AND AREAS OF CIRCULAR CELLS USING PS 27.5 AND PS 31

	PS 27.5 \& PS 31		Requires Swing degrees	Theoretical Bend degrees θ	Suggested Bend degrees θ
Number of Pieces	$\begin{aligned} & \mathrm{D} \\ & \mathrm{ft} \end{aligned}$	Area ff^{2}			
12	21.20	7.53	28.73	9.72	0.68
14	7.31	42	25.7	15.7	25.0
16	8.36	55	22.5	12.5	20.0
18	9.40	69	20.0	10.0	15.0
20	10.45	86	18.0	8.0	15.0
22	11.49	104	16.4	6.4	15.0
24	12.53	123	15.0	5.0	10.0
26	13.58	145	13.8	3.6	10.0
28	14.62	168	12.9	2.9	10.0
30	15.67	193	12.0	2.0	10.0
32	16.71	219	11.3	1.3	10.0
34	17.76	248	10.6	0.6	10.0
36	18.80	278	10.0		
38	19.85	309	9.5		
40	20.89	343	9.0		
42	21.94	378	8.6		
44	22.98	415	8.2		
46	24.03	453	7.8		
48	25.07	494	7.5		
50	26.11	536	7.2		
52	27.16	579	6.9		
54	28.20	625	6.7		
56	29.25	672	6.4		
58	30.29	721	6.2		
60	31.34	771	6.0		
62	32.38	824	5.8		
64	33.43	878	5.6		
66	34.47	933	5.5		
68	35.52	999	5.3		
70	36.56	1050	5.1		
72	37.61	1111	5.0		
74	38.65	1173	4.9		
76	39.69	1238	4.7		
78	40.74	1304	4.6		
80	41.78	1371	4.5		
82	42.38	1441	4.4		
84	43.87	1512	4.3		
86	44.92	1585	4.2		
88	45.96	1659	4.1		
90	47.01	1736	4.0		
92	48.05	1813	3.9		
94	49.10	1893	3.8		
96	50.14	1975	3.8		
98	51.18	2057	3.7		
100	52.23	2143	3.6		

Small cells constructed with bent web piles must have half of the piles bent with the fingers inside and half with the fingers outside.

PS 27.5 and PS 31 when properly swing up to 10 degrees (in either direction) for lengths up to 70 feet (21 meters). The ability to obtain a full 10 degrees swing decreases with length because of the difficulty in handling the longer pieces. For lengths over 70 feet (21 meters), it is necessary to anticipate a reduction in obtainable swing of 1.5 degrees for each 10 feet (3 meters) increase in length.

SETTING AND DRIVING TIPS FOR PS FLAT SHEETS:

Although setting and driving techniques vary with the individual contractor and site conditions, several basic principles can generally be applied. It should be realized that the lack of good setting and driving practice can result in job delays and an unsatisfactory structure. The following suggestions are offered to help avoid problems at the site:
Handling of PS sections: These sections have very little modulus (beam strength) and are, therefore, very susceptible to handling damage. It is important that great care be taken when transporting or lifting these sections. When sheets exceed 70 feet (21 meters) in length, they should be lifted at two or more points.
Have an adequate steel template: Longer sheeting lengths will require a two or three tier template with tiers spaced 15 feet (4.5 meters) or more apart. For example, a contractor should consider at least a two-tier template when installing 70 foot (21 meters) or longer sheets as this will facilitate setting and driving and result in a superior product. As with Z-Piling, it is important that each sheet be plumbed and secured when set.
The diameter of the template is predicated on the contractor's experience and method of setting circular cells. It is important that the template diameter be less than the theoretical inside clear cell diameter to easily close the cell. Wood blocking may be utilized to adjust the template to ensure the proper setting width. Upon filling, the finished cell will expand to meet or exceed published values. When a cell with long lengths is being constructed, it may be advisable to stiffen the starter sheet by reinforcing it full length with a structural shape.
Site conditions such as swift water or hard driving may require more sheets to be reinforced.
Splicing: When it is necessary to splice PS sections, the splice point on adjacent sheets should be staggered by several feet.

Mark the driving template for each pile or pair of piles: This allows for wall adjustments to be made during the setting phase, ensuring that the sheets are located properly for cell closure.
Ensure that the sheets are properly interlocked when set: Improper interlocks become the "weak links" and result in job delays and/or failures. A closed cell must have an even number of sections (including connectors) to avoid an improper interlock. Set all sheets in the cell before driving any of the sheets, other than nominal pinning of the starter sheet(s).
"Shake out" several sheets at any closure point: Following good practice as noted above should ideally result in the last sheet sliding smoothly down into the remaining gap. Although the first sheet is set plumb and the next to last sheet is plumb, the chances that the remaining gap is uniform (19.69 inches or 500 mm) the full length is improbable. Picking up and dropping, or "shaking out," several sheets near the closure point until the sheets run smoothly will minimize the chance of driving sheets out of interlock.
Drive piles in pairs: Once sheet piles are threaded and set, it is more economical to drive two at a time. Some experts suggest that the energy needed to drive a pair may be only 50% more than that required to drive a single pile.
Drive piles in stages and work around the entire cell by alternating sheets (pairs): This allows the piles to be guided by those previously driven and lessens the chance of driving sheets out of interlock. The distance a pile, or pair of piles, should be driven at any one time will be governed by the driving conditions. In the first pass around the cell, every other pair is driven perhaps 4 feet (1.2 meters). In the second pass around the cell, the un-driven pairs are driven 8 feet (2.4 meters), 4 feet (1.2 meters) restrained by the adjacent pairs and then 4 feet (1.2 meters) into virgin soil. This procedure is continued until the cell is driven to design tip elevation. A good practice to keep the cell plumb is to reverse the direction of driving for each pass around the cell.

